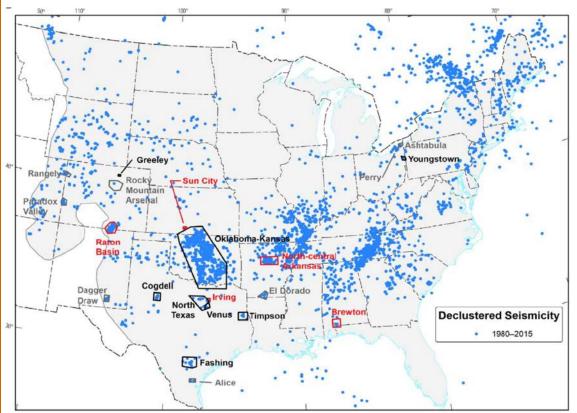
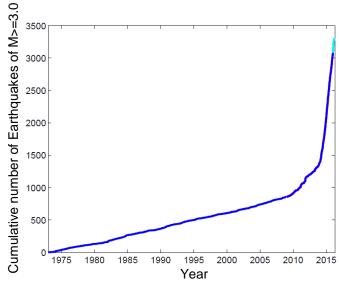
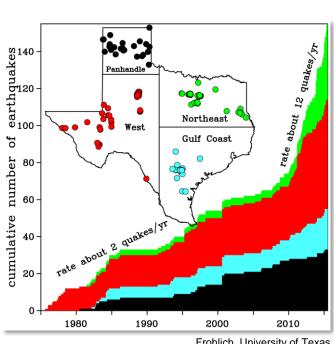
TexNet Technical Advisory Committee Meeting June 7, 2016

Bureau of Economic Geology University of Texas at Austin

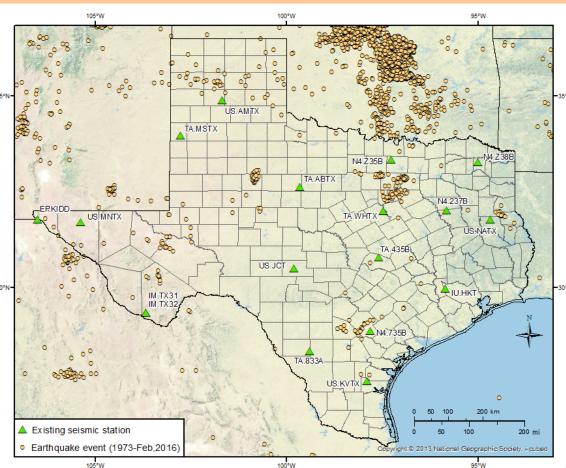


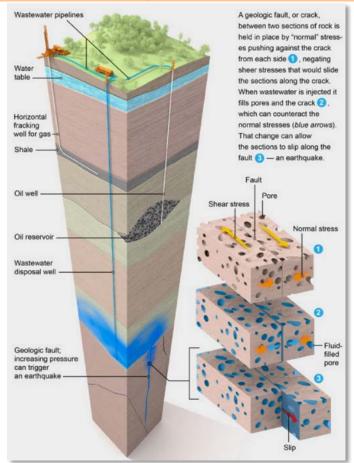

Introduction

Seismic Activity in the Central and Eastern US

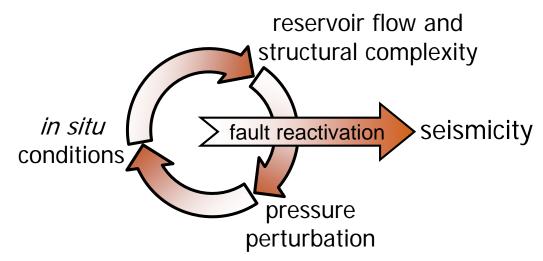


All earthquakes in the last 35 years believed to be primary events (e.g. not aftershocks)


Seismic Activity in Texas and Elsewhere


Frohlich, University of Texas

All earthquake epicenters in the modern USGS-ANSS catalog


Fluid injection can cause Earthquakes

KEY FACTORS:

- fault system characteristics and geologic history
- in situ stress state
- reservoir hydraulic continuity and capacity
- fluid budgets and pressure
- these factors are dynamically coupled...

What we think we know about injection EQs

- Some of the anomalous seismicity in the central US is associated with injection
- Geologic and Geophysical aspects:
 - larger earthquakes occur in the crystalline basement
 - faults being triggered are well-oriented for failure in today's tectonic stress field
 - ground motion is strong but is peaked directly above the earthquakes

Hydrologic aspects:

- the association between injection and triggering is statistically strongest for injection rate
- pressure changes in the injection interval move fast and far
- seismicity generally dies down quickly when injections are halted but can linger for decades
- disposal into sub-normally pressured zones can induce earthquakes

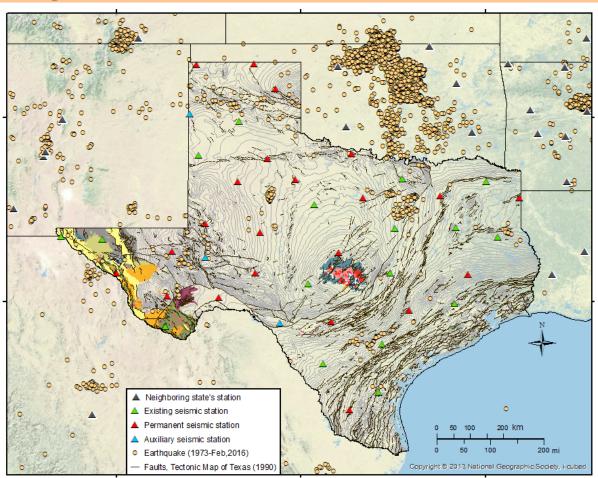
Some important facts:

- the vast majority of wastewater wells do not produce earthquakes
- injected wastewater comes from lots of sources, not just from flow-back of fracking fluids
- fracking is rarely the cause of damaging earthquakes but can generate moderately sized ones

TexNet

DE

Texas is Geologically Diverse

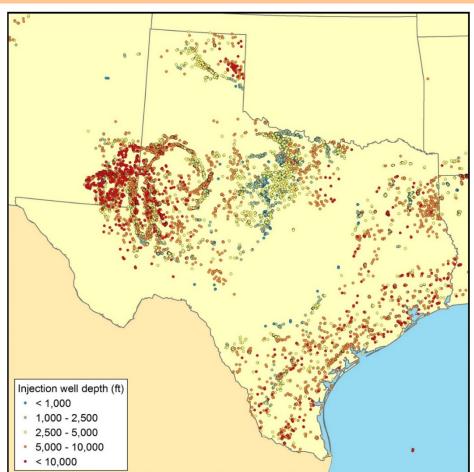


12+ distinct tectonic areas

Anadarko Basin
Amarillo Uplift
Palo Duro Arch
Midland Basin
Delaware Basin
Trans-Pecos/Marathon
Val Verde
Gulf Coast
Talco/Mexia/Balcones
East Texas Basin
Sabine Uplift
Ft Worth Basin

Llano/Bend Arch

Many known fault systems that are poorly constrained in the subsurface



Injection History is Diverse

- ~50,000 injection wells permitted since 1930's
- ~34,000 active injection wells associated with enhanced oil production
- ⋄ ~8,000 permitted disposal wells (UIC Class II)

TexNet Organization

Governor – Legislature

Technical Advisory Committee

Robie Vaughn - Chair

Dan Hill **Chris Hillman**

Hal Macartney **Brian Stump** Scott W. Tinker Kris Nygaard

Dana Jurick

Craig Pearson

TexNet Network and Research*

PIs: Peter Hennings, Ellen Rathje, Alexandros Savvaidis

TexNet Seismic Network

Alexandros Savvaidis^B Tania Murkherjee^B Bissett Young^B

Seismology

Cliff Frohlich Jake Walter

Taylor Borgfeldt^{1,3}

Alexandros Savvaidis^B

Heather DeShon^S Kevin Kwong^{S,2} Oner Sufri^{S,1}

Hydrology, Faults, Geomodels

Peter Hennings^B Julia Gale^B Chris Zahm^B Casee Lemons^B Fault Interpretation Tech^B Bridget Scanlon^B JP Nicot^B Robin Dommisse^B

Geomechanics and Reservoir Modeling

Bureau Directorship

Scott Tinker, Michael Young

Jon Olson^P Rich Schultz^P Peter Eichhubl^B

Mohsen Babazadeh^{P,2} Valerie Gono^{P,2} **Zhiqiang Fan^{B,1}**

Akhil Datta-Gupta^T Michael King^T Jihoon Kim^T

*petroleum operators provide supplemental funding through BEG IA membership

^B Bureau of Economic Geology

¹ UT Institute for Geophysics

PUT Petroleum Geosystems and Engineering

^T Texas A&M Petroleum Engineering

S SMU Seismology

¹Post Doc ²PhD student ³MS student

Science Themes

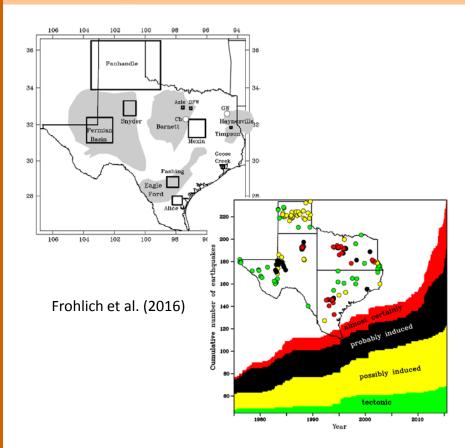
TexNet Permanent and Transportable Array Products

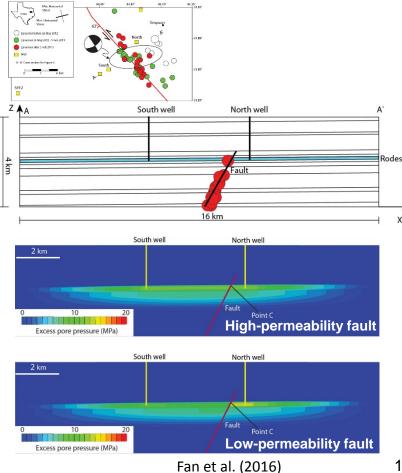
network; earthquake data, locations, calibrated magnitudes, catalog

Seismology

earthquake sequences, source characterizations, triggering analysis

Geologic Characterization


in situ stress, fault system characteristics, fluid data and budgets, reservoirto basin-scale geomodels


Geomechanics and Reservoir Engineering

pore pressure estimations, reservoir hydraulic continuity, fault triggering analysis, fault rupture mechanics

Moving from Associative to Mechanistic Analysis

TexNet Research Over-Arching Goals

- accurate and detailed seismicity/ground-shaking data in Texas
- understanding fault-triggering mechanisms
- assessing the seismogenic potential of Texas basins
- research that can be used to improve fluid disposal operations

TexNet Network and Research Proposed Funding

TexNet Seismic Network

Equipment \$1,701,500

Deployment and Operations \$1,181,362

Seismology

UTIG and BEG \$265,827

> SMU \$201,343

Hydrology, Faults, Geomodels

BEG \$190,906 & \$179,835

Geomechanics and Reservoir Modeling

UT-PGE & BEG \$190,530 & \$192,251

> TAMU TEES TBD \$300,000

TexNet Network and Research Budget

TexNet Seismic	Equipn	nent		SubTotals					
Network	Seismic Stations and Installation	TexNet HUB Hardware	Software	Borehole Subcontract	Materials & Services	Personnel	Computer Usage	Travel	by Cost
Nanometrics (one time cost)	\$1,636,500		\$23,420	\$317,900	\$18,700				\$1,996,520
TexNet (one time cost)		\$65,000							\$65,000
TexNet Year 1 Cost					\$61,500	\$210,875	\$8,700	\$41,100	\$322,175
TexNet Year 2 Cost					\$128,100	\$312,867	\$13,200	\$45,000	\$499,167
SubTotals by Category	\$1,636,500	\$65,000	\$23,420	\$317,900	\$208,300	\$523,742	\$21,900	\$86,100	
Totals	Ş	1,701,500	\$1,181,362						\$2,882,862

TexNet Research Projects

Fiscal	Biennium	2016-2017

Theme	Project Title	Institution/Unit	PI	Р	ersonnel	Materials and Services		Computer Charges		Tuition	Equipment	Equipment Travel		Total	
Seismic Network	TexNet Deployment and Operations	UT-BEG	Sawaidis	\$	523,742	\$ 54	19,620	\$	21,900	\$ -	\$ 1,701,500	\$	86,100	\$	2,882,862
Seismology	Texas Seismologic Studies	UT-IG	Walter	\$	236,930	\$	4,200	\$	4,800	\$ 11,425	\$ -	\$	8,472	\$	265,827
Seismology	Ft Worth Basin Earthquake Characterization	SMU	DeShon	\$	180,909	\$	2,900	\$	-	\$ 6,912	\$ 1,000	\$	9,622	\$	201,343
Hydrology	Hydrology: Fluid Budget Protocols, Data and Analysis	UT-BEG	Scanlon	\$	162,486	\$	3,100	\$	22,920	\$ -	\$ -	\$	2,400	\$	190,906
Faults and Geomodels	Fault Characterization and Reservoir Model Inputs	UT-BEG	Hennings	\$	166,735	\$	2,500	\$	6,600	\$ -	\$ -	\$	4,000	\$	179,835
Geomechanics	Geomechanics of Fault Reactivation	UT-BEG	Eichhubl	\$	165,931	\$	1,400	\$	16,920	\$ -	\$ -	\$	8,000	\$	192,251
Reservoir Modeling and Geomechanics	Pore Pressure Estimation and Fault Rupture Modeling	UT-PGE	Olson	\$	134,130	\$	400	\$	-	\$ 48,000	\$ -	\$	8,000	\$	190,530
Reservoir Modeling and Geomechanics	Coupled Fluid Flow and Geomechanical Modeling	TAMU-TEES	Datta-Gupta	\$	259,033	\$	6,000	\$	3,000	\$ 22,967	\$ -	\$	9,000	\$	300,000
-													Total		4 402 554

Total \$ 4,403,554

HB2 Budget \$ 4,471,800

Contingency \$ 68,246

Contingency 2%

TexNet Timeline 2015-2016

		2015					
TASK or EVENT	June	Jul-Sep	Oct-Dec	Jan-Mar	Apr-Jun	Jul-Sep	Sep-Dec
Texas House Bill 2 Supplemental Appropriation to BEG							
seismic network initial design and preliminary costing							
research program design and vesting of research contributors							
RFP posted, proposals reviewed and ranked							
recruitment of TexNet Manager, Research Principal Investigator							
negotiations with leading vendor							
commence research (UT and SMU)							
contract negotiations with leading vendor							
TexNet Network Manager and Principal Investigator hired							
seismic network design revised (installation method upgraded)							
TexNet permanent site locations identified and vetted							
identification of suitable site landowners							
vendor contact executed							
revise research plans, receive Texas A&M research scope							
develop strategy for temporary station deployment							
Governor's Technical Advisory Committee seated							
TexNet Technicians hired							
commence receiving network and hub equipment							
conduct initial site evaluations							
perform final site evaluations							
contracting with site landowners							
permanent station installation							
temporary station installation							
2016 report to Governor and Legislative Committees							

TexNet: Longer-Term Science and Timing

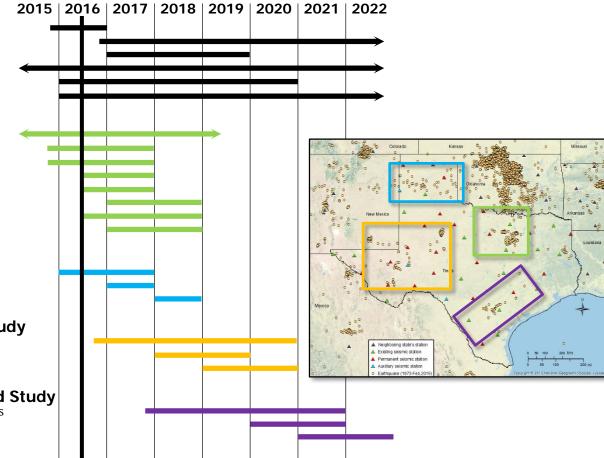
State-Wide and General Topics

- 1. network procurement and installation
- 2. network management and data stream
- 3. R&D products to improve network performance
- EQ compilations and characterizations
- stress and fault mapping
- 6. outreach

Ft Worth Basin Integrated Study

- 1. local seismic networks and EO studies
- 2. basin-scale fluid budgets and pore pressure
- stress characterization (Stanford)
- fault characterization
- 3D basin geo and hydrologic and modeling
- 6. fault reactivation analysis and mapping
- 7. reservoir modeling of seismicity mechanics
- 8. assessment of basin seismogenic potential

Panhandle Seismicity Study


- 1. seismicity analysis (existing and TA stations)
- *integrated geological characterization
- 3. assessment of basin seismogenic potential

Greater Permian Basin Integrated Study

- 1. local seismicity base-line studies and analyses
- *integrated geological characterization
- 3. assessment of basin seismogenic potential

Eagle Ford Operating Area Integrated Study 1. numerous local seismicity acquisitions and analyses

- 2. *integrated geological characterization
- 3. assessment of basin seismogenic potential

*integrated geological characterization

TexNet Texas Seismological Network

Alexandros Savvaidis, PhD, and Peter Hennings, PhD

Bureau of Economic Geology University of Texas at Austin

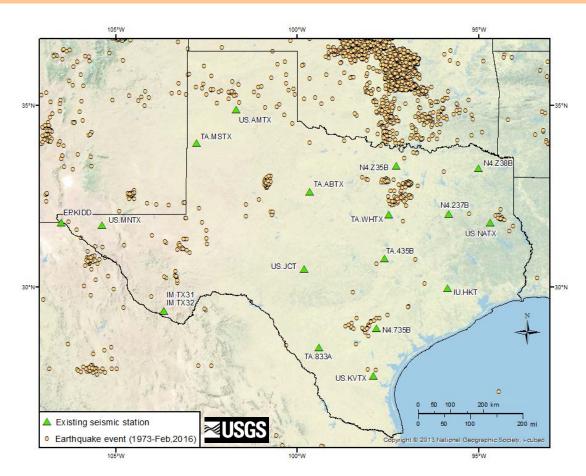
Overview

- TexNet Management
- TexNet Hardware
- Site Assessment
- TexNet Operational Services
- TexNet Products

TexNet Team

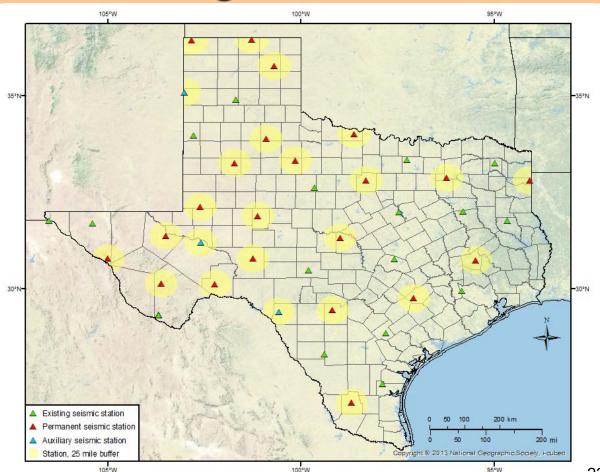
- Alexandros Savvaidis, PhD, BEG, Project Manager
- Peter Hennings, PhD, BEG, PI of CISR
- Ellen Rathje, PhD, CAEE, PI of CISR
- Bissett Young and Tania Murkherjee, BEG, Research Scientist Assoc
- Mark Blount, BEG, External Affairs
- Cliff Frohlich & Jake Walter Univ. Texas Institute for Geophysics
- Heather De Shon, Chris Hayward & Brian Stump SMU
- Scott Tinker, BEG, Director and Texas State Geologist
- Michael Young, PhD, BEG, Associate Director for Environment

TexNet Goals


- To monitor, locate, and catalog seismicity <u>across Texas</u>, capable of detecting and locating earthquakes with <u>magnitudes ≥M2.0</u> (aka—Backbone)
- To improve investigations of ongoing sequences by deploying temporary seismic monitoring stations and conducting <u>site-</u> <u>specific assessments</u>, especially for
 - Events >M3.0 in or near urban areas, or
 - Events co-located where ongoing human activities may be related to earthquake activity

Challenge for Texas

- Existing network infrastructure is not sufficient to fully identify hypocenter depths of earthquakes in Texas
- Earthquake activity scattered across the State
- Network needs to be densified

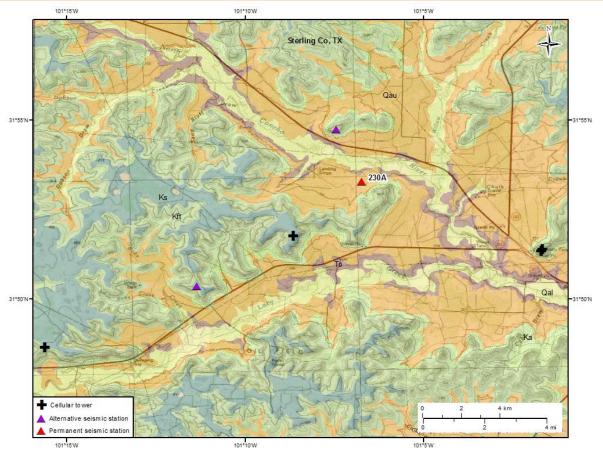


Solution – Expand Monitoring Network

- Fill in the gaps
- Add 22 additional stations, providing 40 station backbone
- The ~36 temporary stations will densify areas of Texas that need special focus

Factors to Assess Possible Station Locations

- Seismicity
- Existing broadband real-time stations
- Existing information from TA Seismological Stations
 - Noise level (Power Density Function)
 - Soil amplification (Noise and Earthquake Data)
 - Shear wave velocity (Vsz)
- Site Geology Topography
- Tectonics
- Location of oil & gas wells
- Cell coverage



Example of Factor: Site Geology & Topography

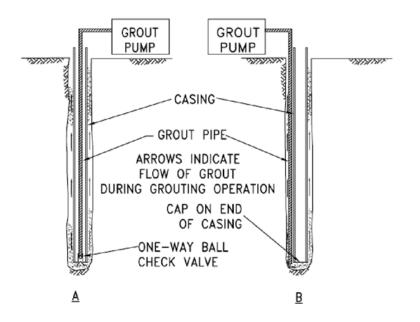
Higher elevation areas are prioritized

- Stiff material
- Isolated
- Cell coverage

Permanent Station Setup

Pole mount hardware Installation:

- 6 Channel Datalogger
- Wireless Modem
- 200Ah Battery
- ❖ 150W Solar Panel, and
- 120sec 3 Component Post-Hole Seismometer



Borehole Setup

- Cased posthole up to 20 feet
- Steel casing with a welded flat base plate on the bottom
- Borehole preparation will follow ASTM DH Seismic (D74000)

Portable Station Setup

Direct Burial Installations

- 3 Component, 20 sec Seismometer
- 3 Component Accelerometer

Station components (data logger, solar panels, etc.) will be identical to permanent stations

TexNet Services on Recorded Data

- TX is the TexNet Code on the International Federation of Digital Seismograph Networks
- DOI (Digital Object Identifier) http://dx.doi.org/doi:10.7914/SN/TX
- Data Provider Agreement in place with IRIS for archiving TexNet data collected from permanent and portable stations
- Time Series Data available to the public through IRIS and TexNet Hub

TexNet Operational Services

- Permanent and portable station deployment
- Data acquisition
- Local data archiving
- Network monitoring (QC,QA)
- Real-time earthquake information
- Updated manual earthquake information
- Monthly earthquake catalog
- Web portal

TexNet Products (Up to 3yrs)

- Earthquake Source Information (Real Time and Manual)
 - Minimizing the hypocenter uncertainties
 - Local and moment magnitude
 - Fault plane solutions
- Updated velocity model
- Shakemaps (real-time)

Data & Hardware Management

We have established a process for data and hardware management

- Data from all stations will be transferred to TexNet HUB and used directly in TexNet operations
- Data and corresponding analysis results will be available to the public
- An individual can adopt a station or share data
- Portable installations managed by TexNet Team

Portable Installations

- Areas of deployment based on:
 - Spatiotemporal (Accelerated/Decelerated) Seismicity Distribution
 - Societal / Infrastructure Risk
 - Baseline Seismicity Studies
 - Specific Scientific Questions Related to Research Products
- Provisional areas
 - Ft Worth Basin
 - Snyder area
 - Permian Basin region
 - Eagle Ford Play area
 - Panhandle
 - East Texas

Current Status

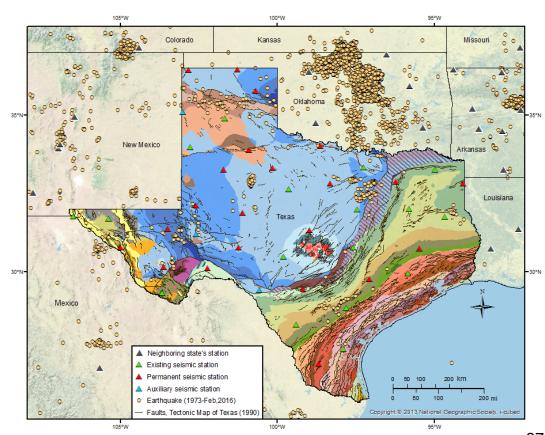
- Nanometrics (Ontario, Canada) awarded contract after public bidding process. Hardware delivery expected by the end of June, 2016
- We have identified provisional locations for each seismometer, both permanent and auxiliary. Site visits are ongoing.
- We have established our leadership team for TexNet
- Current expectation is for system to be operational and to begin streaming data by Summer 2016
- Critical issue identifying landowners and securing lease agreements

Summary and Update of Earthquake Activity in Texas

Alexandros Savvaidis¹, PhD and Jacob Walter², PhD

¹Bureau of Economic Geology ²Institute of Geophysics University of Texas at Austin

Overview


- Tectonic Regime
- Historical Seismicity
- Instrumental Seismicity

Tectonic Regime of Texas

12+ Distinct Tectonic Areas

- Anadarko
- Amarillo Uplift
- Palo Duro Arch
- Midland Basin
- Delaware Basin
- Trans-Pecos/Marathon
- Val Verde
- Gulf Coast
- Talco/Mexia/Balcones
- East Texas Basin
- Sabine Uplift
- Ft Worth Basin
- Llano/Bend Arch

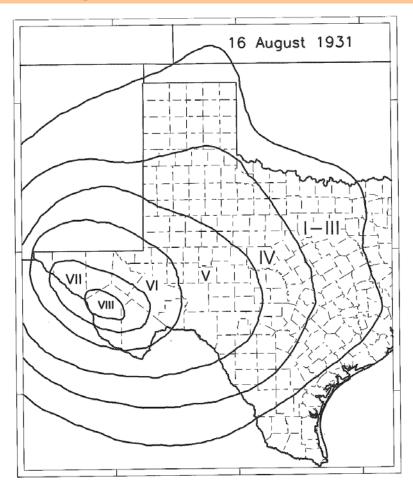
Historical Seismicity... before 1973

Major events with felt M > 5

- 30th July 1925, M = 5.4 Panhandle
- 16th August 1931, M = 6.0 Valentine
- 20th June 1936, M = 5.0 Borger
- 12th March 1948, M = 5.2 Dalhart

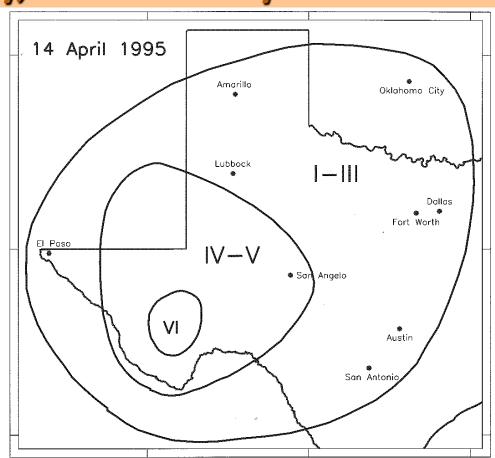
Magnitude	Typical Maximum Modified Mercalli Intensity	
1.0 - 3.0	1	*Not Felt
3.0 - 3.9	II - III	
4.0 - 4.9	IV - V	
5.0 - 5.9	VI - VII	
6.0 - 6.9	VII - IX	
7.0 and higher	VIII or higher	*Conside

*Considerable - Total Damage


Magnitude derived from Macroseismic Intensities (perceived ground motion in the Modified Mercalli Intensity Scale)

http://earthquake.usgs.gov/learn/topics/mag_vs_int.php

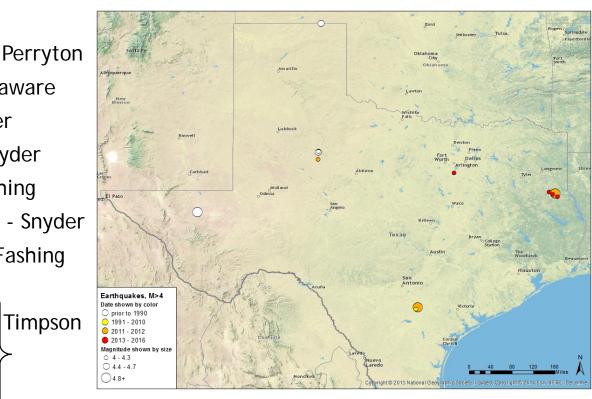
16th August 1931, M = 6.0 - Valentine



Instrumental Seismicity, 1973 ... today

One event with M > 5

◆14th April 1995, M_w = 5.7 - Alpine



Instrumental Seismicity, 1973 ... today

Events with M>=4.0

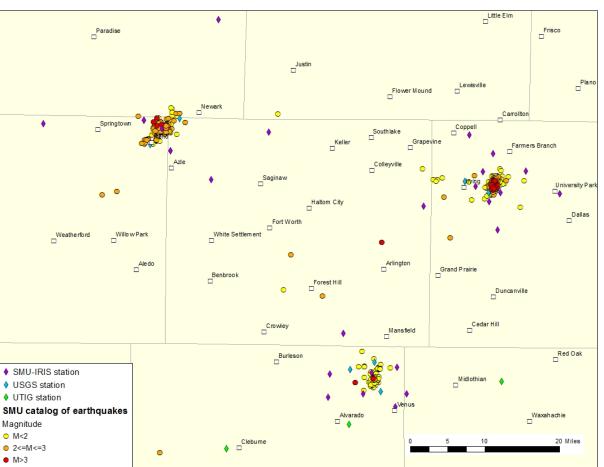
- 15th February 1974, m_b=4.5 Perryton
- 1st August 1975, m_b=4.8 Delaware
- 7th June 1977, M_L=4.0 Snyder
- 16th June 1978, m_{bLq}=4.6 Snyder
- 9th April 1993, m_{bLq} =4.3 Fashing
- 11th September 2011, M_w=4.3 Snyder
- 20th October 2011, M_w=4.8 Fashing
- 17th May 2012, M_w=4.8
- 25th January 2013, M_w=4.1
- 2nd September 2013, M_w=4.2
- 2nd September 2013, M_w=4.3
- 7th May 2015, M_w=4.0 Venus

References of Recorded Instrumental Seismicity

❖Ft Worth Earthquake Sequence 2008-2009 (m_b<3.4) - (Frohlich et al., 2011)</p>

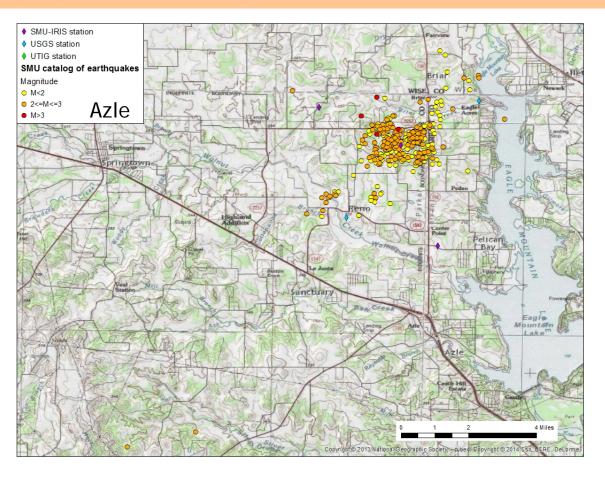
Timpson - (Frohlich et al., 2014)

- ♦ 9th June 2009, m_{bLq}=2.8 Cleburne (Fort Worth) (Justinic et al., 2013)
- ❖North Texas 2009-2011 (M_w<3.1) (Frohlich, 2012)</p>
- ❖East Texas Earthquake Sequence 2010-2012 (Walter et al., 2016)
- ❖17th May 2012, M_w=4.8,
- ❖25th January 2013, M_w=4.1
- ightharpoonup2nd September 2013, M_w=4.2 & M_w=4.3
- 20^{th} November 2013, M_w=3.6 Azle (Hornbach et al., 2015)

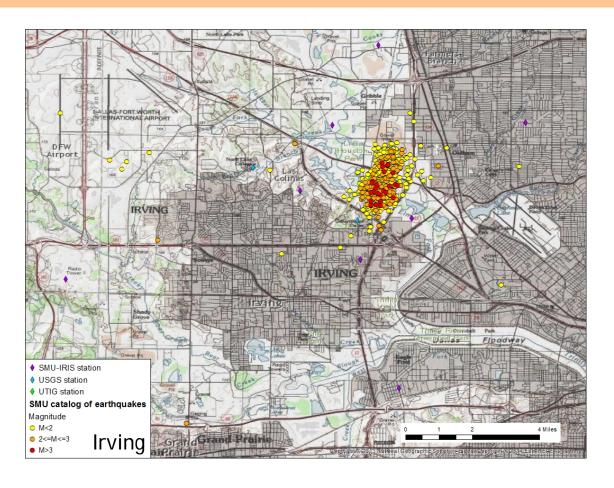

Recent Recorded Seismicity in Ft Worth Basin

Three Distinct Areas

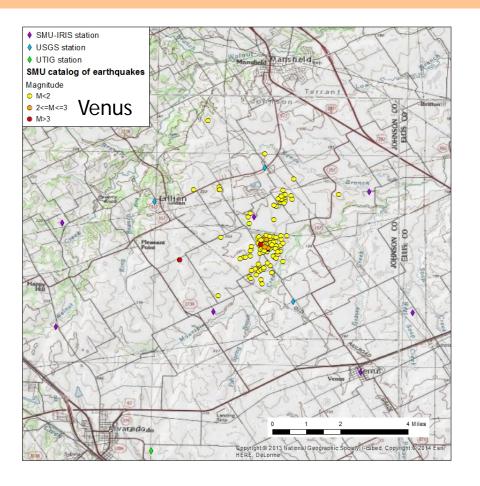
- Azle
- Irving
- Venus


Studied Seismicity based on portable network array

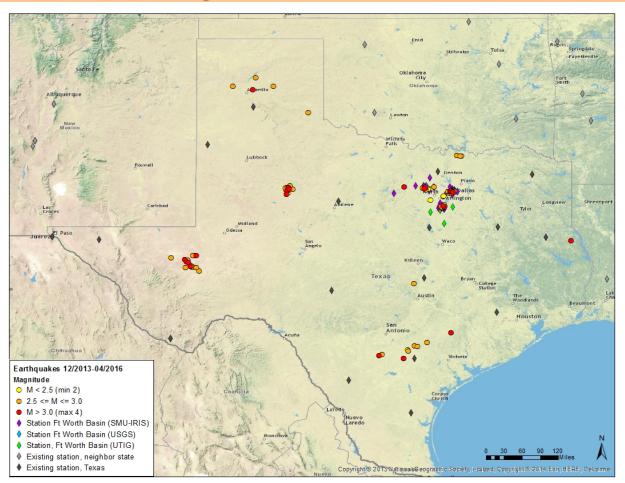
Installations in FW Basin



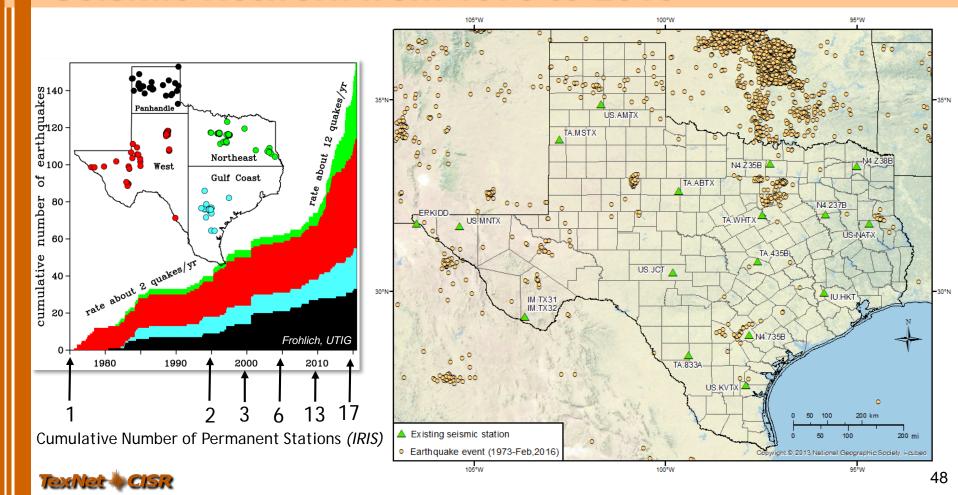
Installations in FW Basin



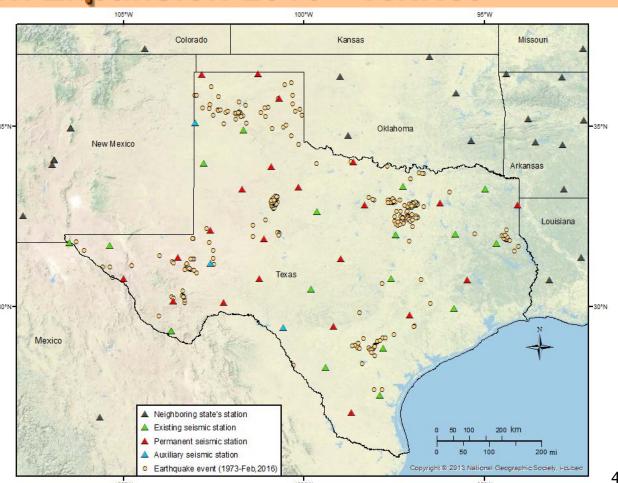
Installations in FW Basin



Overview of Seismicity - 2013 to 2016



Seismic Network from 1973 to 2015


Seismic Network Expansion 2016 - TexNet

Permanent Stations (22)

Auxiliary Semi-Permanent Stations (3)

Portable Stations (33)

Concluding Statement

- Recorded seismicity has shown that small magnitude earthquakes events occur throughout the State
- TexNet will provide:
 - The spatial <u>distribution of seismicity</u> in Texas, and
 - Minimize uncertainties in earthquake locations (position and hypocentral depth)

Thank you!

TexNet Technical Advisory Committee Meeting June 7, 2016

Bureau of Economic Geology University of Texas at Austin

